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Abstract Particle image velocimetry (PIV) 
can be used for pressure assessment. This non 
intrusive measurement method provide a high 
spatial resolution which is unavailable when 
using pressure transducers. The velocity 
vector information was used to solve inversely 
the Navier-Stokes equation to provide the 
pressure gradient needed for the Neumann 
boundary condition. Then the velocity data 
was used again to solve the pressure Poisson 
equation. Two flow problems were tested, 
water flow in a pipe with a constriction and an 
impinging air jet. The constriction flow was 
chosen to represent laminar flow problem 
where pressure is changing significantly. 
Results were compared with an inviscid 
solution. and the effect of spatial resolution 
was examined. The impinging air jet was 
chosen to represent a turbulent flow problem. 
The pressure distribution on the impingement 
plate was compared with reported data from 
the literature and some aspects of time 
averaging were discussed. 

and turbulent flows. The pressure field in both 
laminar and turbulent flows is useful when 
forces are to calculated, when comparison 
with pressure gauging is required, and when 
better understanding of the flow problem is 
desired. Pressure gauges used for pressure 
measurement are expansive, large in their size, 
and require an actual contact with the fluid. 
When the measurement is performed 
intrusively the flow and pressure are affected 
by the procedure itself (e.g. while using a 
catheter for coronary procedures). It was 
suggested, therefore, to avoid such difficulties 
by computing the pressure field from the 
velocity data generated by the non intrusive 
particle image velocimetry method. In the 
current study we present calculation results of 
pressure fields based on the instantaneous 
velocity fields obtained by particle image 
velocimetry. 

The calculation of the pressure field is 
determined by using the pressure Poisson 
equation which is derived by applying the 
divergence operator on the incompressible 
Newtonian Navier-Stockes equations, 

Introduction 
Particle Image Velocimetry (PIV) generates v 2 p  = -PV - {V - mb in Q (1) 
instantaneous velocity maps in a two 
dimensional cross section of flow problems. 
The spatial resolution and the accuracy of the 
measurement, if performed adequately, are 
considered to be high. The measured velocity 
can then be used for a wide range of post 

where P is the piazometric pressure, V is 
the velocity vector, and p is density. The 
representation of the two dimensional form of 
Eq. 1 in Cartesian coordinates is, 

processing calculations, including velocity 
duav  magnitude and direction, velocity gradient, 2 = { (  + 2  ( -- ) + [ z )~ }  a) 

viscous shear, stream function, vorticity, and 
others. Mean and fluctuating components can 

ayh 

be calculated based on multiple realizations to 
represent the statistical parameters of unstable 



where u and v are the x and y components 
of V. The right hand side of Eq. 1 can be 
directly calculated fiom the velocity vector 
field generated by the PIV system. 

Gresho and Sani (1987) have pointed out that 
the physical boundary conditions are to be 
derived from the conservation of momentum, 
namely the Navier Stokes equations. The 
correct boundary conditions for 
incompressible flow are, therefore, the 
Neumann boundary conditions rather than the 
Dirchelet conditions. Similar to the right hand 
side of the Poisson equation (Eq. l), particle 
image velocimetry can be used to provide the 
required boundary pressure conditions by 
applying the Navier Stokes equations on the 
boundary, I?, as follows, 

where p is the dynamic viscosity and t is 
time. When either steady laminar flow or 
steady mean turbulent flow are to be analyzed, 
the time derivative, dV/dt, is zero and the 
PIV data can be used to compute the 
p{v ~VV)  and pv2V terms. 

When turbulent flows are of interest, the 
Reynolds stress term is added to both Eqs. 1 
and 2. The Neumann boundary conditions are 
obtained by solving the time average turbulent 
eauations and the turbulent Poisson eauation 

I 

is hence, 

The pressure field calculation was tested for 
two flow problems; water flow in a pipe with 
a constriction and an impinging air jet. The 
constriction flow was chosen to represent 
laminar flow problem where pressure is 
changing significantly. Results were 
compared with an inviscid solution and the 
effect of spatial resolution was examined. The 
impinging air jet was chosen to represent a 
turbulent flow problem. The pressure 
distribution on the impingement plate was 
compared with reported data from the 
literature and some aspects of time averaging 
were discussed. 

Fig. 1 The measurement regions. 

index notation was used such that Experimental 
Constriction Flow A constant distilled water 

i,  j = 1,2,3 and ui and xi represent the flow rate of 360 rnllmin was circulated 
velocity and location. Here V denotes the though a 20- inner diameter glass tube 
time averaged velocity vector. The Cartesian with a 10- inner diameter constriction. A - 
representation of V d/& (ulu;) is, 5pm Polyamid seeding particles (PSP-5, 

Dantec) solution was added to the distilled 
water, resulting in a concentration of 116 



mgll. A 160mJ per pulse Nd:YAG double 
laser system (Quantel), a cross correlation 
lKxlK CCD camera (Kodak, MEGAPLUS 
ES 1.0), an image acquisition system (OFS), 
and a home made analysis software was used 
for the particle image velocimetry. Mass flow 
rate was measured using a Coriolis 
acceleration flow meter (Micro-Motion). 
Water was circulated using a centrifugal pump 
and a constant head container to maintain a 
steady flow rate. Fully developed flow was 
achieved using an entry length of 21 
diameters. The tube orientation was vertical 
and flow direction was upwards to avoid 
accumulation of air bubbles and 
sedimentation. Fig. 1 shows the glass tube. 

The velocity vector field was generated by 
cross correlation within the two rectangular 
frames shown in Fig. 1. Calibration resulted in 
a micron to pixel ratio of 14.347 pdpixel. 
Interrogation areas of 32x32 pixels (459.1 pm 
x 459.1pm) and 64x64 pixels (918.2pm x 
918.2pm) were used. The effect of 
measurement resolution- was tested by 
repeating the PIV analysis every 4, 8, 16, 32, 
and 64 pixels (57.4, 114.8, 229.6, 459.1, and 
918.2 m ) .  Results showed that vector 
validation and filtering was unnecessary. 
Filters such as signal to noise ratio and a local 
kernel comparison resulted in zero rejection. 
Forty realizations of the instantaneous 
velocity fields were obtained and averaged for 
each experiment. 

Impinging air iet  
The experimental setup consists of an air 
supply system, an aerosol generator, a mixing 
chamber and a convergence section, and a 
round smooth glass tube (length 300 mm, 
inner diameter 29.5 mrn). A round flat plate 
(200 mm in diameter) was installed 
perpendicular to the flow, 1, 3, and 5 tube 
diameters downstream from the tube exit. A 
flow rate of 6.83e4 m3/s was used to meet the 
flow conditions of Peper et. a1 (1997) and was 

measured using a Micro-Motion coriolis based 
flow meter. 

Propylene-glycol particles were generated by 
a Laskin aerosol generator resulting in an 
average diameter of 0.75 mp (Echols and 
Young, 1963). A choice of 32x32 pixels 
square interrogation areas, a 57.8 mp /pixel 
ratio, and repeating the PIV analysis every 16 
pixels resulted in 3906 vectors in a field of 
57.3 mm by 58.3 mm. For each distance 
between the tube exit and the plate (Idi, 3di, 
and 5di, with di representing the nozzle 
diameter), 130 realizations of the 
instantaneous velocity fields were measured. 
Vector validation was obtained by a signal to 
noise filter and a local kernel comparison 
filter resulting in an average rejection rate of 
approximately 5%. One such velocity map is 
shown in Fig. 2. 

Fig. 2 An impinging jet velocity vector map. 

Fig. 3 A tube velocity vector map. 
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Fig. 4 Pressure profiles in the converging section of the tube. The curves in the first frame were 
obtained using a range of spatial resolution. The legend is consist of 2 numbers the first indicates the 
interrogation size and the second describes the vector spacing. 

3 
Results and Discussion 

Constriction Flow Fig. 3 shows an 
instantaneous vector field in the converging 
section of the tube constriction. As the cross 
sectional area decreases, the axial velocity 
increases and the profile becomes less 
parabolic and more uniform. Although the 
lateral component is small its contribution to 
the pressure calculation was significant. As 
expected, the lateral component points 
towards the tube center line with a maximum 
near the region where converging slope is the 
largest. Fig. 4 shows that the pressure result is 
sensitive to the spatial resolution. High 
resolution (interrogation area of 32 pixels and 
spatial resolution of 4 pixels) generates a 
curve with a changing slope but is over 
predicting the pressure. Low resolution 
(interrogation area of 64 pixels and spatial 
resolution of 64 pixels) generates a curve with 
an almost constant slope and an under 
prediction of the pressure. The resolution 
which was chosen to be used for the analysis 
of the second frame ( x = - 15 i 0 rnm) was of 
16 pixels. 

The im~ingine iet Prior to calculating the 
pressure of the impinging turbulent flow, a 
stagnation potential flow was used to test the 
pressure calculation procedure. This 
procedure starts by using the velocity $ 
components, u and v ,  and solving inversely 
the Navier-Stokes equations (Eq. 2) in order to 
provide the Neumann boundary conditions, 
Vp on T . The velocity components, u = -Cx 
and v =Cy are determined by using the 
potential flow stream function, y~ = Cxy . The 
pressure gradient components, derived by the 
Navier-Stokes (Euler) equations, are 
@/ax = +c2x and @/ay = - p ~ 2 y .  Hence, 
the boundary condition at y=O is dp/@ = 0,  
the boundary conditions at the side boundaries 
are @/& = + p c 2 ~ ,  and the boundary 
condition at y = y, is a Dirichlet type, 

p(x, y,) (Corcos 1963) determined by the 
potential solution (see Eq. 5). Next, the 
velocity data is used to calculate the right 
hand side of the Poisson equation (Eq. 1) 
which was solved numerically by using the 
Liebmann successive over relaxation (SOR) 
iterative scheme (Gerald and Wheatley, 1997). 



In Fig. 5. the calculated pressure result was 
compared with the potential pressure provided 
by applying the Bernoulli's equation. 

U: is the velocity in the far field (e.g. the air 
jet velocity) and p is density. A maximum 
relative error was found to be 0.021 when 
high resolution was chosen (step size was 8 
pixels out of 520 pixels) and 0.082 for low 
resolution (step was 16 pixels). 

Fig. 5 A comparison between the potential solution (Eq. 
5) and the numerical solution (Eq. 1) for high (8 pixels) 
and low (16 pixels) resolution. 

The objective here was to compare pressure 
distribution obtained by particle image 
velocimetry with measured data from the 
literature. Peper et. a1 (1997) published 
recently results of measured pressure on a flat 
plate with pressure transducers for three 
different distances between the nozzle exit and 
the flat plate. Geometry and flow conditions 
as described in the experimental section were 
designed to meet the flow conditions used by 
Peper et al. (1997). The results in Fig. 6 were 
plotted using the dimensionless pressure 
coefficient, C,, as a function of radial location 
( p is pressure, p, is atmospheric pressure and 
V is the nozzle exit air velocity). It is shown 
that the pressure increases when the distance 

from the jet exit decreases. The pressure 
profiles of Fig. 6 were obtained by applying a 
time averaging over the instantaneous 
solutions of the Poisson equation (Eq. 1). Eq. 
1 was solved using a Cartesian coordinate 
system and a Dirichlet boundary condition on 
three out of four boundaries (on the plate 
@/dy = 0). In general, good agreement was 
found between the pressure calculation and 
the pressure measurements near and around 
the stagnation region. However, for a radial 
distance of x / R > 1.5 , the calculated 
pressure deviates from the measured values. 
Such a deviation can be explained by the less 
physical use of the Dirichlet boundary 
condition on the sides and the choice of 
Cartesian formulation rather than Cylindrical. 
Changing the side boundary conditions from 
the Dirichlet type to the Neurnann type will 
result initially in an increase of the pressure 
value generated by the numerical solution of 
the Poisson equation. However, by using 
cylindrical coordinate system, the value of the 
right hand side of the Poisson equation will 
become more negative (due to Vr / r  ) 
resulting in pressure reduction. 

Two types of averaging could be obtained. 
The Poisson equation (Eq. 1) can be used to 
compute the instantaneous pressure for each 
instantaneous velocity realization and then 
averaged. Alternatively, the mean pressure 
can be calculated directly using the turbulent 
Poisson equation (Eq. 3) which is based on the 
time averaged velocity and the Reynolds 
stress. Fig. 7 presents a comparison between 
these two averaging methods. 



Fig. 6 The pressure distribution on the plate as 
calculated from the PIV velocity data and as was 
reported from measurements by Peper et al. (1997). 

Fig. 7 A comparison between Eq. 1 and Eq. 3 

As s h o w  in Fig. 7 some deviations exist 
between the two averaging techniques. A 
possible explanation to this deviation is 
related to the experiment sample size. The 
sample size herein was 130 pair of images. 
Given a standard deviation of 0.1 and 
allowing a maximum error of 2% with 95% 
probability the sample size of the mean 
velocity at the jet center is nearly 100. The 
difference between the required sample size 
and the actual size means that the statistical 
error of the average velocity is somewhat 
smaller. However, the standard deviation of 
the derivative of the instantaneous velocity is 
larger than that of the velocity itself. When the 
pressure was calculated using Eq. 1, the 
square of the derivative of the instantaneous 
velocity was used to compute the right hand 
side, genQating larger errors. On the other 
hand, when the mean pressure was calculated 

using Eq. 3, the derivative of the Reynolds 
stress was used. Since the standard deviation 
of the Reynolds stress is larger than that of the 
mean velocity but smaller than the standard 
deviation of the derivative of th 
instantaneous velocity we conclude that Eq. 3 
generates a more accurate average pressure 
result. 

4 
Conclusions 
Pressure can be obtained when spatial velocity 
data generated by particle image velocimetry 
is available. The methodology consists of two 
steps. The first step generates the Neumann 
boundary conditions by solving inversely the 
Navier Stokes equations. The second is a 
numerical solution of the pressure Poisson 
equation. Although velocity gradients are 
often noisy, the pressure assessment is usually 
successful because of the smoothing name of 
the Poisson equation. However, PIV data must 
be accurate and relatively simple. Spatial 
resolution must be treated with special care 
and averaging is be handled to reduce errors. 
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